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The LBGK method with local grid refinement has been shown to be an efficient
and accurate tool for the simulation of incompressible, viscous flows over complex
geometries. In the present study, further improvement of this concept is proposed,
enabling the use of smaller amount of time steps on refined grids without impairing
the spatial or temporal accuracy. This extension of the LBGK method has been
proved by analytical and numerical investigations. The gain in computational time
was found to be significant. 2000 Academic Press
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1. INTRODUCTION

The lattice-Boltzmann method [1, 2] and its recent modification, the lattice-BGK (LBGk
method [3-8], are based on gas-kinetic representations of fluid flow in a strongly redu
“molecular” velocities space. In the simplest LBGK models, the flow is described throu
the evolution of discrete molecular velocity distribution functions on uniform Cartesie
lattices with additional diagonal links. Hydrodynamic variables are computed at the no
as moments of the discrete distribution functions. The resulting algorithm has been sh
to be simple and efficient for computations of incompressible, viscous flows [7, 8, 10, ?
and low Mach number reactive flows [9] over complex boundaries [9, 10].

An essential advantage of the LBGK method is that no discretization of the hydrodynat
equations has to be provided. The macroscopic equations can be deduced after Taylo
Chapman—Enskog expansions of the zero- and first-order moments of the basic equa
for distribution functions describing relaxation to the local equilibrium state. The resultir
macroscopic equations approximate the Navier—Stokes equations for incompressible
with second-order accuracy in Knudsen number in space and time in the low-freque
limit. After some modifications of the relaxation scheme in combination with convention
convective-diffusion solvers for equations of temperature and species, the scheme is
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to solve low-Mach-number flows with strong density gradients caused by heat releas
chemical reactions or complex composition of the mixture including species with differe
molecular weights [9]. The restriction of second-order accuracy in Knudsen number to
low-frequency limit is not very severe because under time-independent external conditi
all laminar flows approach to this limit (stationary flows or vortex streets). Therefore, tl
very simple and stable LBGK scheme with an accuracy of second order in Knudsen nurr
in space and time is suitable for solutions of wide classes of physically relevant problel

A more severe restriction for the application of the basic LBGK scheme is the ident
of the “molecular” lattice and numerical mesh, which makes the scheme macroscopic
similar to an uniform Cartesian-grid solver. Nannelli and Succi [11] have extended t
original lattice-Boltzmann scheme to handle Cartesian nonuniform grids, borrowing so
ideas from the finite volume method. The other approach to extending the LBGK methoc
curvilinear grids was published by He and Doolen [12, 13] based on the interpolation strat
proposed in [14]. This concept is based on the fixed time step defined by an “underlyir
fine LBGK lattice. However, the use of strongly different spacing for the “molecular” lattic
and numerical mesh can in general decrease the accuracy of the scheme in the regio
high gradients of macrodynamic variables. To avoid decoupling between “molecular” latt
and numerical mesh, the concept of hierarchical grid refinement was considered [18]. T
concept is widely used in conventional CFD methods, e.g., in the method of adaptive m
refinement (AMR), proposed by Berger and Colella [15] and Quirk [16] and applied to tl
investigation of detonation waves in [17]. The adaptation of this concept to LBGK schen
was proposed in [18].

In the concept of hierarchical grid refinement, the calculations are based on a coarse
covering the whole integration domain. In critical region, detected either by adaptation ¢
teria or definec priori, a finer grid is superposed on the basic, coarser grid. The calculati
proceeds with large time steps accordingly to the coarse grid, while on the finer grids sev
time steps are performed to advance to the same time level. In its Cartesian-grid vers
this technique is very suitable for lattice BGK models as numerical mesh and “molecul
lattice are not decoupled and therefore the accuracy of the LBGK scheme can be conse

In contrast to conventional methods, the employment of locally refined patches in LBC
methods requires more care because the lattice represents the phase space (i.e., the mo
velocity and the local coordinates). The coupling of solutions on the different meshes v
solved in [18] through the introduction of different relaxation parameters on the grids wi
different lattice spacings and rescaling of the nonequilibrium part of distribution functiol
in transition between different grids.

The local grid refinement strategy allows the resolution of all parts of the flow with a
proriate accuracy and saves memory and CPU time compared to an uniform grid. Howe
due to the explicit manner of the LBGK scheme, multiple time steps are necessary on
grids according to the refinement ratio. For computations of time-dependent reactive flc
[9], this feature can be very important, as the use of smaller time steps in the zone:
reaction reduces the stiffness of chemical source terms and allows solution of the e
tions for species and temperature on the same grid as lattice-BGK equations in the sim|
explicit manner. But for computations of steady-state and low-frequency incompressi
flows the use oh smaller time steps on the fine grid (wharés the spatial refinement
factor) can essentially increase the computational time. To remove this drawback the
of smaller amount of time steps in the zones of fine grid is proposed. For time-depenc
computations, this is connected with the change of “molecular” speed and reduction of



ACCELERATION OF LATTICE-BGK SCHEMES 409

number of time steps on the fine grid, but does not impair the temporal accuracy in cer
limits. For steady-state computations, the saving of CPU time is much larger, because
same amount of time steps can be chosen on coarse and fine grids, as well. Thus, the
posed acceleration strategy, in combination with grid refinement, improves essentially
performance of lattice BGK method.

The principles of this strategy are outlined in the following and proved by a number
test calculations.

2. BASIC ALGORITHM WITH LOCAL GRID REFINEMENT

The lattice-BGK modelis described by the rate of change of a discrete velocity distribut
function [3-8]:

fpi(t + 8t 1 + Cpidy) = fpit. 1) + o[ ft, 1) — fit.n)]. (1)

The equilibrium distribution function is a discrete analog of the Maxwellian distributio
function [5, 6]. For the simulation of incompressible flows with dengigy= 1, one can
take it in the form [7, 8]:

P U, Copi u,uU CriaChpi
fe‘q —t a“~pla avp . Pia~pif (Sa 2
pi p ,OOCSZ + Csz + ZCSQ CSQ B (2
P = POCSZZ fpi, U= Z 1Epicpia 3
p.i p.i

whereCs = C/+/3, C = 8, /68, 8« isthe lattice spacing arsgis the time step. The kinematic
viscosity, defined in the frame of the LBGK model [8], depends on the lattice spacing w

Vo = <i_1>8x6c (4)

The essential parameters are the global Mach numilgeand the Knudsen numberof
the flow,

U & Cé&

Mo = —2 - =%
0= CTLTTL

®)

whereUy is a characteristic velocity and is a characteristic length of the flow, i.e., the

minimal length for this grid on which hydrodynamic variables are essentially changed. T

order of this length can differ from one part of the flow to the other.
Considering nondimensional variables

(6)

To T *TeTm P e

one can rewrite the expression for the equilibrium distribution function in the LBGK scher
(Eq. 2) as

eq__ p uani(x uauﬁ Cpiacpiﬁ A2 . _ .
fpi —tp ?“‘ C2 + 2C2 . CZ _Saﬂ ’ p_CSZ fpl’ u= Z fp|Cp|.
S S S S p.i p.i

)
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The nondimensional variablgsandu defined at the nodes of the lattice as zero- and first
order moments of the distribution functions satisfy a system of macrodynamic equatic
These equations can be derived from the zeroth- and first-order moments of the expat
LBGK equation, Eq. (1), using a splitting of the discrete distribution function into a
equilibrium and nonequilibrium part in the sense of a Chapman—Enskog expansion.

The proof of consistency of these equations in the low-frequency limit with Naviel
Stokes equations for incompressible flows can be obtained, for example, from the proc
consistency of LBGK approach for the system of low Mach approximation of Navier—Stok
equations (LMNA) given in [9], in the limiting case of constant dengityx = po = 1. The
proof is accompanied by the estimation of asymptotic accuracy of the LBGK scheme. |
of the second order in Knudsen numledroth in time and in space Wg ~ €.

If the flow is strongly anisotropic, as in the case of high Reynolds number flows, the
of grids with different lattice spacing is necessary to preserve the value of the Knud:
number in the whole computational domain. For the transfer from one grid to the ott
special care has to be taken to preserve the physical properties of the flow problem. Tl
properties are expressed by the global similarity parameters, as they are

the Reynolds number

_ Uolo  6Molo  B6MoLo/L

Re= = = 38
w h(Z-1)  e(2-1) ©
and the Strouhal number
L SiL SiLo/L
sy o _ Slo & o/ ©)

UoTo - 5x MQTQ - EMOTO-

HereUg is a characteristic flow speely is the characteristic length of the flow defined
by the geometry, andly is a characteristic time. In the periodical low-frequency flow (as
vortex street)Ty corresponds to the highest hydrodynamic frequemgwgiffers from the
time of a periodTye, of the oscillating flow which is larger thafy. The Strouhal number
used below in our analysis of macroscopic equations obtained with LBGK scheme is ba
on To. The range of unsteady flows in the low-frequency limit, as mentioned above,
defined by a Strouhal number StrO(1), which means that the characteristic tifigis
of the order of the flow timé.o/ Uo.

The basic coarse grid is chosen by such a way that L. Notice that in some cases
it requires the redefinition df o and Re. One example is flow around long slender bodie
such as airfoils when the angle of attack is not large. In this daskas to be chosen not
as the length of the chord but as the thickness of the airfoil, because this length is on
order of the characteristic length in the wake.

If the grid size is changed, it is required that the Knudsen nuralier the same on all
grids, where

8 ot
€= 2 =X
Lo L
HerelL is the characteristic length of the flow resolved on the fine grid.

The step sizes on coarse and fine gridsands!, are connected by the refinement ratio
as

& Lo

n=-—= .
8L
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Assuming that the Mach numbers are the same on coarse and fine grids (the value
Mach number in all overlapping nodes of the both grids are taken from the fine grid) &
assuming the same “molecular” speed on the coarse and fineQfrigsC’, one obtains

Conservation of the Reynolds number on coarse and fine grids=FRd, is satisfied, if
the kinematic viscosities on the both grids are the safe; vf. From the definition of the
kinematic viscosity through the parameters of the LBGK scheme, Eq. (4), the relations

between relaxation parameters on the grids with different lattice spacings is given by [:
2
f
= - 10
T 1Nt -1 (10)

For unsteady low-frequency flows the Strouhal number has to be preserved likewise. "
equality,

SEL sTLo/L
ste = Ok gy dko/l
€ M()T() € MOTO
results in the ratio of time-steps
.
8

In the following, flows with boundary conditions independent in time will be considere:
High-frequency components of solutions dissipate in the transitional stage of compt
tions because no high-frequency disturbances are generated or amplified by the bour
conditions. Then the time advance of LBGK scheme reproduces the low frequency solu

f
i_t = (Mge)Str/(Lo/L) = Moe St (11)
0 n

If Mo ~ € <« 1andn > 1thens{/To ~ O(e?).

3. ACCELERATION OF THE LBGK SCHEME

In the original variant of the local grid refinement technique for the LBGK metho
[18], the same molecular velocity on the fine and coarse grids is assumed. The calcule
proceeds with large time steps according to the coarsé@ridhile on the fine gridh time
stepss! = 65/n are performed to advance to the same time-level, whésehe refinement
ratio. To accelerate the algorithm the use of smaller amount of time steps on the fine gri
desired.

The acceleration of the LBGK scheme for time-dependent flows is based on the ide
using different molecular speeds on the fine g@ti2°°and on the coarse gri@l°. The ratio
of the molecular speeds is defined by the parameter of acceleration of the scheme,

CC
To = Cf.ace >
With 8, = Cé;, the time step on the fine grid is

T
52 = 55?0. (12)
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The equation (12) shows that fafl; = 1 the original refinement is recovered, whereas fol
Yo > 1 the time step is chosen larger.

Despite different molecular velocitie8!-2°¢ = C¢/ Yy, it is assumed that the local Mach
number is conserved on all grid levels. Then the dimensionless velocity (local Mach numt
u"-2pecomes

Uf,acc Uc

=ce

c

f,acc __
u - Cf.acc

=u
This results in the following rescaling of the dimensional velocity
Uf.acc — UC/T().
From the conservation of Reynolds number,R&JyL /v, on all grids follows the rela-
tionship between the relaxation parameters of the accelerated scheme on the fifié%grid

and on the coarse gridy°

f.acc __ 2

14 nYoR/wt—1)

The expression for the equilibrium distribution function in the accelerated LBGK scher
(more accurately called effective equilibrium distribution function) is prescribed to be

* p uacpia Tuauﬁ Cpiacpi B
for =tp| = : —8ap | | 13
P Plc2 + c2 + 2c2 c2 P (13)

whereY is an additional adjusting parameter (described later).

4. ANALYSIS OF THE ACCELERATED LBGK SCHEME

The proof of consistency of macrodynamic solutions provided by the accelerated LBC(
scheme with the solution of Navier—Stokes equations for incompressible flows is basec
a consideration of orders of magnitude in the two parameters, the lattice Knudsen nun
€, and the global Mach numbéd,, which are

8 CaCC(SaCC U UaCC
€= = = t «1 and Mg= =

L L c = cae €1

On the molecular level, on which the LBGK method is numerically solved, the followin
nondimensional variables related@8°¢ andL are introduced:

_ X - tcae
X=—, t= 14
3 3 (14)
The macroscopic variables are related to the following reference quantities:
U P
u Yo (15)

= Cacc’ p= pocaccz’ V= caccl’
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The accelerated LBGK scheme reads in nondimensional form

foi(t +e. 1+ cpie) = Foit, 1) + [ F57"(t, 1) — fpi(t,1)] (16)
BCC Uy Cpi YUgUg ( CpiaCpi
felq* —t p a“pia aYp pia“pip N aa
Pl p{ c2 c2 + 2c2 c2 p
17)

2
pacc= Cs Z fpiv Uy = Z fpiCpia-
p. p.i

In the following, the bar-superscripts &fandt are skipped for simplicity. Under the
assumption of continuous physical sp&te) in the limit of smalle, the LBGK equation,
Eq. (16), is expanded in Taylor series with respect to seall

9 9 €27 917 ace eqs 3
8'[ +Cp|a8Xa fpi + = 2 Bt ~+ Cpia 7 %, fpi + o [fpi - fpi ] =0(e’). (18)

The discrete distribution function can be split into equilibrium and nonequilibrium con
ponents as

foi = fo" + for. (19)
p

The moments of the nonequilibrium distribution functiff®* satisfy:
Z fneQ* -0, Z fneq*cpia —0 (20)

Introduction of the expansion Eq. (19) into the Taylor series Eq. (18) and sorting in ord
of € results in an expression for the nonequilibrium comporfefit”

FIE9%(t 1) = — < Mo k) Ot
ot 0Xy

wacc

cpia> + O(e?). (21)

Summation over all discrete velocities in series Eq. (18) with Eq. (19) and Eq. (20) yiel
the equation of the zeroth moment,

at Z fp| + 8/3 Z fp|Cp|/3 + (atat Z fp| + zataﬁ Z fp|Cp|/3

+ 90, Z f;“*cpiﬁcpiy> = 0(e?),
p.i

and of the first moments by multiplying @i, ,

1 \ 1
%> fpiCpia + dp Z for CpiaCpis + > 5 (atat Z for' Cpia + 205 (1 - wacc>
p.1

p.i

* 2 *
X Ot Z fslq CpiaCpip + 8ﬂ (1 — wacc) 87/ Z f;iq CpianiﬂCpiy> = O(ez).

p.i p.i
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Using symmetry properties of the lattice,
thcpia =0, thcpiacpiﬂcpiy =0, thcpiacpiﬂcpiycpiécpié =0,
p.i p.i p.i

> tpCoiaCpip = C28up: > tpCpiaCpipCpiy Cpis = Ca(8updys + SaySps + Sasdpy ).
p. p.i

and the expression for the effective equilibrium distribution function, Eq. (17), one c:
obtain the following nondimensional macrodynamic equations

1
at ( pacc/cg) + aot Uy + 56 (81 8t pacc/cg + 28t 304 Uy

+ 3,95 (TUuUg + P*%,p)) = O(e?) (22)
otUy + 8/3(TUaUﬁ + pacc(saﬁ) = aﬁv(aﬁua + aauﬁ + 8a,38yuy)
1 1
+e (Eatatua + 95 (1 - wacc> d(Tu,up + pacc(saﬂ)> + O(e?). (23)

Here the nondimensional kinematic viscosity reads as

Cle( 2 el 2
V:SZ<a)aCC_1> :6(wacc_1)

For T = 1 the system of equations, Eq. (22) and Eq. (23), results in the continui
equation and the momentum equations of the Navier—Stokes equations for incompres:
flow, beside the time derivative ¢f in the continuity equation and the terms proportional
to € in the both equations.

These additional terms are in the order of truncation error in the low-frequency lim
High-frequency components of the solution usually introduced into the LBGK scheme
initial conditions dissipate in the transitional stage of computations if no high-frequen
disturbances are generated or amplified by boundary conditions. Thereafter, the time
vance of the LBGK scheme reproduces the low-frequency solution only, which correspol
to Strouhal numbers of Str O(1). This time behavior is typical for laminar vortical flows,
for example, for von Karman vortex streets, and was checked by computations.

For verification the system of Equations Eq. (22) and Eq. (23) in molecular scales
transformed to the characteristic scales of the low frequency solutions. The new refere
velocity is then a characteristic hydrodynamic velotiginstead of the value of the molec-
ular velocity C2°¢, The global Mach numbe¥ly = Uy/C = U3¢/CaC€ « 1 appears then
an as additional parameter of magnitude.

The relationship between the nondimensional quantities in Eq. (14) and Eq. (15) and
new dimensionless quantities (with tilde-superscript) is given by:

~ X — ~ — - r:
X:E: s 3X:8X=E, t:WZtStFMOTO
l]_uC_u . P p¥ 1 v n
T Uy Mo PT U2 T MZYZ RE T Ul | MoYo

Notice that here Strand Ré are related to characteristic length on the fine driénd
therefore differ from Sfi; R€ by the factor ofn.
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Using these transformations with the definition of the time derivative o; /( MoStr o),
the following equations can be deduced from Eq. (22) and Eq. (23):

St TEMZ 8¢ 5/C2 4 9,0, = O(Moe) (24)
St Yodtly + 95 Y0, 0p + 3, PYE

T . _ .
:aﬁ<R§(3ﬁua + 9, Ug +8a,38yuy)> + O(Mge). (25)

At first the nonaccelerated ca¥ = Y = 1 will be considered. Assuming the global
Mach numbeiMy is on the order o€?, with a > 0 the consistency with continuity and
momentum Navier—Stokes equations for incompressible flow is given. Moreover, mac
dynamic equations of the LBGK scheme, Eqs. (24) and (25) approximate the solutior
Navier-Stokes equations for incompressible flow with asymptotic accuraey when
e — 0andMqg ~ e.

Usually in numerical simulations with the LBGK scheme, one uses small but finite valu
of e and My in the orderMy ~ ¢ ~ 0.1. In this case, the previous asymptotic estimatior
of accuracy is not sufficient, because in some regions of the flow (as, for example, in
zones of vortex shedding) the space deviations of velocity over the characteristic length
be two orders smaller than the reference value. One way to ensure second order accl
in € in the whole computational domain is to decrease the global Mach nusibhevhich
leads inversely to an increase of the computational time and to a loss of the efficiency.
other way is the use of the semiempirical critefi@![~ [p]S, [d]' ~ [{]S. Here the nota-
tions [F]', [F]® are used for the local deviations of variallen the characteristic time and
length accordingly. These estimates are based on the assumption that in the absence of
frequency components of the solution the local time deviations of the pressure and of
velocity are in the order of their local space deviations. These criteria can be easily chec
during the computations. With these estimates one can obtain the following overestin
for [ p]® from the momentum equatioi[® ~ []S, which under the conditiond] ~ [ f]°
ensures that “wrong” terms in the continuity equation are on the or@éf@f and Egs. (24)
and (25) approximate the continuity and momentum equation of Navier—Stokes equat
for incompressible flows with second-order accuracy ihMg ~ €.

Consider now the case of an accelerated scheme Wifiere 1. To achieve consistency
with the Navier—Stokes equations for incompressible flow, the additional parameser
set equally; i.e., T = Yy. By rescaling the pressure in the form

= pYo

©u

the parametefy can be cancelled in the momentum equation, Eq. (25), such that t
physical momentum equation can be achieved with a truncation er@¢Mbe/ Yo), that
is O(e?) for Mg ~ €.

In the same way, the continuity equation is satisfied with second-order accuracy
Knudsen numbex if

StITEME ~ €2,

Thus, the accelerated scheme is consistent with the Navier—Stokes equations for inc
pressible flow with second-order accuracy in Knudsen number in space and time if co
sponding rescalings are used. A truncation error in {dge?) does not mean second-order
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FIG.1. Temporal development of flow parameters for unsteady flow around a cylindeeatliRg, My, = 0.2,
with n = 6 and boundary-fitting conditions on the surface of cylinder. Drag coeffi€igntift coefficientC,,
and pressure differencap between the front and end point of cylinder versus non-dimensional ;{am%”—‘l)
for different Y. Solid thin lines correspond to the ca¥g = 1.2; solid lines correspond to the ca¥g = 1,
and solid bold lines correspond to the cage= 0.6. Straight lines are bounds of reference val@g3.,, Cimax:
Ap(to + T/2).

accuracy in time, since

5( _ Stl’cMoeTo
T n
If Mg~ €, Yo =1, andn = 1, then the time accuracy reduces to first ordes; .
Comparison with benchmark results [20] has shown a correct time resolutdphTy ~
O(€®) at least in the vicinity of the body where vortices are appearing. The new accelerat
concept offers the possibility of correcting the accuracy by an appropriate combinatior
the parameterdly, Yo, andn using, for example, the condition

St StrcMoeTo 3
- =———"~€".
To n
An example of the influence of this choice is given in Fig. 1.
5. INTERFACE CONDITIONS OF THE ACCELERATED LBGK SCHEME

The compatible interface conditions for local grid refinement are obtained as in [18] frc
the consideration of an LBGK scheme on two overlapping grids, coarse and fine. On b
grids the LBGK scheme provides the macroscopic solution

u=uMS1+ 0(@?), p=p'L+ O(?),
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where superscript NS denotes the exact solution of the Navier—Stokes equations for inc
pressible flow. The nonequilibrium part of the distribution function in the LBGK schemn
reads as

1 [(afST  afd
fSieqz " <8—EI + 8—X[2Cpia 3, (26)

with second order accuracy én For the accelerated LBGK scheme it reads as

1 9f ea* 9f ea*
negs pi pi )
fpl —_ a)acc ( at + a Cp|a 6t . (27)

Introduce the auxiliary postcollision distribution functions

o= fol+ (L—w) - fo (28)

for the LBGK schemes withr = 1 and

fSiOSt* — f:iq* +(1- wacc) . fgieq* (29)
for accelerated LBGK schemes with > 1.

For flows with characteristic time$ such ass;/T ~ (MgeSt)/n and Mg ~ €, the
time derivative of the equilibrium distribution function in Eqgs. (26) and (27) becomes |
higher order than the spatial derivatives of the equilibrium distribution function. Therefol
Egs. (28) and (29) can be rewritten with second-order accuracy in Knudsen narober
the coarse grid as

1—f ofd
Cl) '—plcpiafsx (30)

w® 0Xy

postcoarse __ ¢ eq

and for the accelerated LBGK scheme on the fine grid as

) 1 — of-ace fEa*
postfine _ ceqsx pI .
o = o — e gy, Coiedx (31)

Equation (31) can be rewritten with second-order accuracy in Knudsen néraker

eq
fplost,fine — feux _ 1- o"acd fpi R 1— ohace
pi pi ofac  gx, pla®x whace
3tp((Yo — 1) pNS + 0.5(Yo — HUFSUNS(cpiy Cpis /CE — 8,5) )
: . Coiadx. (32)
20X,

The last term in Eq. (32) can be neglected, and this does not impair the accuracy of
solution as far as its zeroth-order momentis zero and its first-order mondg(its pNSs,5 +
uySulS) ~ [u]%€2. Up to the coefficient it is the same as introducing the ervef in the
value of the hydrodynamic velocity. Notice that tor- 0.1, the error is lower thae® as far
as the interface between two grids is usually lying outside of the region of high gradients
therefore the deviation of nondimensional velocity on the characteristic length of the fine ¢
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in this region is {i]° ~ €Lo/L ~ €/n. Together with the overestimaté — w)/w < 0.5, it
provides the error €3/2n. This becomes important in the region of vortex shedding, wher
the local value of velocity can be 2.

Because the values of¥S, pNS, and their spatial derivatives are continuous over the
interface between two grids and the relaxation parameter is changed, the following r
tionships between postcollision distribution functions on the interface are carried out w
second-order accuracy in Knudsen numder

a)f.acc c

- wf,acc) [ Siosmne _f Siq*] _ w [ rE)iostcoarse_ f Fe):io,coarsi ) (33)

T (1-ow%n

Notice that for the nonaccelerated LBGK schemes and accelerated schemes for ste
state problems using the same amount of time steps on the fine and coarsg gritl)(
the expressions ofg‘iq are the same on the both grids. Instead of Eq. (33), the followin
equation is obtained,

of postfine e w° postcoarse eqcoars
[fpi — foi] = — fpi j (34)

(1— o) _(1—wﬂn[m

which results in the interface boundary conditions proposed in [18].

The higher order terms appearing from expansiofﬂﬁ‘i’, which are notrescaled correctly
by Egs. (33) and (34), produce an error that does not impair the accuracy of the solut
It can be shown by the following simple arguments.a;l'rgg remained term%fgqf second or
in e for the low-frequency limit are proportional teSEﬁCpianiﬂ and~ 8, . Under
the assumption that in the low-frequency limi]{ ~ [ p]® and u]' ~ [u]® (which can be
easily checked during the computations) one can obtain from macrodynamic equati
the following overestimate forg]* ~ [p]® ~ Mo[u]®. Taking into account the symmetry
properties of the latticé _ , ; toCpiaCpisCpiy = 0, >~ ; tpCpia = 0, ONe can conclude that
the zeroth-order moment of truncated terms in Egs. (33) and (3410gMb[u] €2, [u]€®),
that is,~¢* for flows with Mg ~ ¢, and the first-order moment is @ ([u]%¢?), that is,e3
for flows with Mg ~ €. Actually, it is of the higher order because of the presence of th
coefficientc?(1 — w)/w, which can be over-estimated a61

Although in [18] second-order interpolation on the grid interfaces was proposed, the |
of linear interpolation in space and time at the grid interfaces does not change the accura
the scheme. Linear interpolation 6f%°°"*®on a link of the coarse %Zrifngith si®é = C§F
provides error in the %Qfseg—collision distribution function et&‘;)zﬁcpiacpm and on
time-intervals¢ ~ (8f)?—#. Using the same estimates as before, one can conclude tf
the common error introduced in the solution on the interface between coarse and fine ¢
due to the linear interpolation of distribution functions from the neighboring nodes of

coarse grid is consistent with the order of accuracy of the solution on the coarse grid.

6. TEST COMPUTATIONS

6.1. A Steady-State Problem

Test calculations are performed for 2-D benchmark problems of incompressible flo
defined in [20], which were calculated and compared by many different methods. The
cases describe an incompressible flow around a circular cylinder placed nonsymmetric
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in along rectangular channel (Re20, Re=100). The stationary 2-D flow case at Reynolds
number Re= 20 is used here for validation of the present concept. The computations
performed on a coarse grid (22143 nodes) with a patch of refinement raticaround
the body covering (2& 23) coarse cells. The maximum velocltiyat the inlet in units of
molecular spee@ is equal to 0.1 /C ~ ¢), which results in a relaxation parameter on
the coarse grid ab® =5/3. The nonaccelerated LBGK scheme and the accelerated LBC
scheme for steady-state problem&=£ 1) were used in the test calculations. During the
first 2000 time steps, the solution is advanced only on the coarse grid with bouncing-b
boundary conditions on the surface of the cylinder to accelerate the onset of steady-:
flow. Then the development of distribution functions on the fine grid with boundary-fittin
conditions on the surface of the cylinder is considered but still without influence to t
solution on the coarse grid for 1000 time steps. Finally, the whole exchange of distribut
functions between two grids is performed.

In the overlapping nodes of the fine and coarse grids (except the interface coarse-to
grid), the values of velocity on the coarse grid are equal to the values of velocity on the
grid. The convergence criterion is set by

> JUC(xi, t + 1) — uC(x;, t)[|?

<1x107".
lue(xi, t + 1) -

i

Results for computations on three successive refined patches are shown in Table
seen in Table I, the values of drag coefficieBtsobtained on the finest patch are slightly
over the band of reference values [20]. This is connected with the fact that only the pe

was successive refined, whereas the surrounding coarse grid was fixed. This results i
fixed error~ €2 in the numerical solution.

The Richardson formula
Fon — FAh)/
=log| ——— log 2
p 9( Fr — Far g

TABLE |
Results for Steady Flow around a Cylinder at Re =20: Spatial Refinement Facton, the
Number of Time-Steps on the Fine Grid versus One Time-Step on the Coarse Gril’, the
Values of Drag and Lift CoefficientsCp and C,, the Pressure DifferenceAp between the Front
and Back of the Cylinder, the Memory Usage in Mbytes, and the CPU Time in s

n Nf Co C. Ap Mem CPUtimeins
8 8 5.6118 0.0107 0.1168 19.3 10,938
4 4 5.5392 0.0109 0.1161 8.3 1,720
2 2 5.2321 0.0128 0.1123 5.5 575

Space accuracy $2.08 p=2.44
8 1 5.6175 0.0107 0.1169 19.3 2,227
4 1 5.56321 0.0105 0.1160 8.3 765
2 1 5.2286 0.0124 0.1123 5.5 474

Space accuracy $1.83 p=2.04

Bandwidth of 5.570 0.0104 0.1172

reference values [20] 5.590 0.0110 0.1176

Note.Spatial Accuracy is Presented by the Expongnt
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is used for the proof of accuracy of the scheme with boundary-fitting formulation. It is a
plied to the values of drag coefficierfy and to the pressure difference between the fron
and back points of the cylinder computed on three successive refined patches. The re
obtained with nonaccelerated LBGK scheme are shown in the fourth row and with acce
ated LBGK scheme in the eighth row. These test results confirm the theoretical estima
of second-order accuracy for the scheme with boundary-fitting formulation [18, 19].
The first observation from Table | is that the spatial accuracy is not impaired by the
of one time-step on the fine grid versus one time-step on the coarse grid. Second, the
putational time could essentially be reduced by the lower number of time-steps on the
grid. Third, the absolute CPU time on an HP9000/C160 workstation is relatively low for su
high resolution. Unfortunately, it is rather difficult to compare absolute CPU time with tt
data available from[20] because the stopping criteria was not defined in conditions of ber
mark computations. Considering this part of benchmark computations more as a defini
of the order of global CPU time and using also results obtained in our numerical group,
conclude that the CPU times of the accelerated LBGK scheme with local second-order
refinement compares well with highly developed finite element and finite volume metho
Notice also that here such a strong side of LBGK schemes as good parallelization was
used. Keeping this in mind, one can conclude that the LBGK scheme with boundary fitti
and local grid refinement based on the present acceleration concept is competitive with
best conventional CFD methods and techniques for solution of steady-state problems.

6.2. A Time-Dependent Problem

To investigate the properties of the present concept in unsteady flows, the same geon
problem as described before is solved, but at a higher Reynolds numbel ® The
flow becomes periodically unsteady with development of a vortex street. Definitions &
benchmark data are given again in [20].

The computations were performed on a coarse grid 223 nodes) with a patch of
refinement ratio around the body covering (2323) coarse cells. Second-order accurate
boundary-fitting conditions on the surface of cylinder were used [18, 19]. In Fig. 1 the col
putations of drag and lift coefficients and pressure difference on the cylinder are perforn
forn = 6 and a global Mach number bdfy = 0.2. We wish to demonstrate the control of the
time accuracy, as discussed in Section 4. The paraffgtisrchosen a¥, = 1.2, 1, 0.6.

With the parameter of acceleratiafy = 1.2 the maximum value of the lift coefficient
differs from its reference value by more than 13%. Decreasing tivice corrects the value
of C_. This demonstrates that the new paramé&igprovides an additional possibility for
the local improvement of the time accuracy of LBGK schemes.

Results of the computations with the smaller value of a global Mach nuiibet 0.1
(resulting in a relaxation parameter on the coarse @fiek 1.923), Yo = 2, and different
refinement ration are shown in Table Il. We wish to emphasize that the memory usac
(and partially CPU time) can be reduced by programming optimizations, which are not
objective of this paper.

As one can see from Table II, the results obtained with second-order boundary-fitt
conditions for unsteady problems agree very well with the reference values [20]. Res
of computations with the accelerated LBGK schenfg+£ 2) on the patched grid with the
refinement ration =8 are shown in Fig. 2. The numerical mesh is shown in Fig. 2a; th
instantaneous isolines @fvelocity andy-velocity are plotted in Fig. 2b and Fig. 2c. The



ACCELERATION OF LATTICE-BGK SCHEMES 421

TABLE Il
Results for Unsteady Flow around a Cylinder at Re=100: Spatial Refinement Facton,
Parameter of Acceleration of the Schemé&ry, Relaxation Parameter on the Fine Gridw;, Max-
imal Values of Drag (Cp,..,) and Lift ( C,.,,) Coefficients and Pressure DifferenceAp(ty + T/2)
between the Front and Back of the Cylinder ¢, Corresponds toC, ), Str Number, Mem-
ory Usage in Mbytes, and CPU Time Per Cycle in s forY,=2 (CPU Time per Cycle in s

for Yo=1)

CPU time per
n Yo w Cormax Climax Ap Str Mem cycleins
6 2 1.351 3.18 1.00 2.49 0.300 18 277 (472)
8 2 1.220 3.23 1.00 2,50  0.300 27 597 (1053)
10 2 1.111 3.246 1.01 2.50 0.300 39 1125 (2008)
Bandwidth of 3.22 0.99 2.46 0.295
reference values [20] 3.24 1.01 25 0.305

i 7
f ____,f*_:"__

\kf J“—/ &f\)/ l O\\ { j O kj

A0 O N
RATIN NN O

) (] d

FIG. 2. Unsteady flow around a cylinder at Re1L00 withn = 8 andY, = 2: (a) Numerical mesh; (b) instan-
taneous isolines of-velocity; (c) instantaneous isolines pivelocity; (d) instantaneous isobars.
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FIG.3. Temporal development of flow parameters for unsteady flow around a cylindecal 8@ M, = 0.1
with n =8 andY, = 2 and boundary-fitting conditions on the surface of cylinder. Drag coeffi€igdift coefficient
C., and pressure differenaep between the front and back points of the cylinder versus number of time&teps
on the coarse grid. Straight lines—bounds of reference v&ygs, Cinax: AP + T/2).

instantaneous isobars are presented in Fig. 2d. Figure 3 represents the corresponding
and lift coefficients and the pressure difference between the front and back points of
cylinder versus the number of coarse time steps. As one can see from Figs. 2 and 3
reduction of the number of time steps on the fine grid does not influence the accuracy of s
tion of the finally developed low-frequency time-periodic flow, whereas the computatior
cost is reduced by a factor close to 2.

A comparison of the performance of the accelerated LBGK model with highly develop
finite element and finite volume methods for the Navier—Stokes equations for the se
unsteady benchmark problem published in [20] shows the excellent properties of this ¢
kinetic solution method. A similar comparative analysis of the results obtained with tl
LBGK scheme and with finite volume scheme for wake flow past a rectangular cylinc
recently published in [21] has also shown excellent agreement. However, the estimatio
the comparative performance of both solvers was not the objective of this paper; the LB
simulations were done on the basic equidistant grid.

7. COMPUTATIONAL EXAMPLE FOR CASCADE FLOW

The proposed scheme using Cartesian-like grids with accurate boundary formulatior
lows computations of flow around complex geometries in an easy way. Anisotropic fle
features are resolved in details by grid refinement, which becomes more efficient by
present acceleration strategy. Thus, this solution method couples the inexpensive grid
eration of Cartesian grids with the efficiency of the LBGK method and the high resoluti
of local grid refinement.
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To demonstrate this ability the cascade flow around an airfoil, for the first time conside
with multiscale lattice-Boltzmann schemes in steady-state cases in [22], is computed
Re=1000. The airfoil is described by

f(X) =ar(X — v/X) + & (x* — V/X) + ag(x® — /X),

wherex is normalized to 1 and the coefficients for the upper and lower contours of t
airfoil are

A1iow = 0.343766  agiow = —0.02828469 agiow = —0.1469358
ayup = 0.09054341 ap,, = —0.3910232 ag,, = 0.0887612

In an absolute coordinate systegt Yo, the integrated domain is a parallelogram ABCD
with verticesA(0, 0), C(0, D), B(Dq, D; - tg(«)), D(D4q, Dy - tg(«) + D»), whereD, =
0.99 is the cascade widtl); = 0.7 4+ coS«) + 0.7, andx = 37.5°. The profile is set wittx
axis parallel to AB and CD sides just in the middle @at/2) and the origin of the axis is at
Xo = 0.7. In the inlet, the velocity is prescribed with an anfle- 53.5° with respect to the
Xo axis, which results in an angle of attack on the airfoil of. IEne outlet pressure is con-
stant, and velocity is extrapolated from the computational domain along the normal to E
Pressure at the inlet is extrapolated along the normal to AC from the computational dom

The x-axis of the coarse lattice, covering the whole domain, is directed along the /
side of the parallelogram. The embedded grid with the refinementratid is superposed
on the basic coarse grid and second-order accurate boundary-fitting conditions [18, 19
applied on the surface of airfoil. The absolute velotityat the inlet in units of molecular
speedC is equal to 0.1, /C ~ €), which results in the relaxation parameter on the coars
grid ®=1.885. In Fig. 4a, the numerical mesh with embedded grid around the airfoil
shown. Nodes of the Cartesian grid lying outside of the inclined computational dom:

i L L i L ke 1
200 300
b
FIG. 4. Unsteady cascade flow around an airfoil at=R#000 in a periodical cell: (a) Grid and refined zone
with n=4 around an airfoil; (b) isobars and streamlinesYg= 2.
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200 250

FIG. 5. Unsteady cascade flow around an airfoil at=R€000. Isobars and streamlines in the vicinity of the
trailing edge aff, =2 (enlarged part of Fig. 4).

consume 7.6 % of the whole memory usage, but allow the conservation of the simplic
of algorithm. Instantaneous isobars and streamlines of developed low-frequency perioc
flow are shown in Fig. 4b. In Fig. 5, the enlarged part of Fig. 4 in the vicinity of the trailin
edge is shown. In Fig. 6, the temporal behavior of drag and lift coefficients fo4 is
shown; dotted lines correspond to the nonaccelerated LBGK schége X), solid lines

to the accelerated LBGK scheméy= 2).

The results for the accelerated and nonaccelerated schemes are shown in Table III.
difference between values obtained with different time-stepping on the fine grid is on 1
order of accuracy of the solution. The CPU time per cycle obtained with the accelera
LBGK scheme T = 2) is better than 1.7 times less than the CPU time per cycle obtain
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26000 27000 28000 29000 30000
/5

t

FIG. 6. Unsteady cascade flow around an airfoil at-=R€000,n =4. Comparison of temporal behaviour
of lift (C_) and drag Cp) coefficients obtained with nonacceleratéft, = 1) and acceleratedY, =2) LBGK
schemes (the same case as in Fig. 4 and Fig. 5).
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TABLE 11l
Unsteady Cascade Flow around an Airfoil at Re = 1000: Spatial Refinement Factar,
Parameter of Acceleration of the Schemé&’,, Maximal Values of Drag (Cp,,,,) and Lift
(CL,..x) Coefficients, Strouhal Number, Memory Usage in Mbytes, and CPU Time Per
Cycleins

n Yo Comax Climax Str Mem. CPU time per cycle ins
4 1 0.092 0.395 0.860 36.5 2001
4 2 0.081 0.380 0.859 36.5 1162

with the complete variant of grid refinemenfq= 1), and this improvement in CPU time
is achieved with zero algorithmic cost. The improvement becomes greater with increa
refinement ratio.

The curves of the lift and drag coefficients in Fig. 6 reveal the presence of differe
frequencies of the periodical flow. The Fourier analysis of the time behavior shows a nunr
of discrete characteristic frequencies (Fig. 7). The frequencies agree very well for both
accelerated and nonaccelerated schemes. However, the amplitudes differ in both cas
that their superposition in Fig. 6 apparently presents a different behavior.

The sensitivity of time-dependent wake flows behind airfoils to numerical influence
even in the range of the truncation error, was found also in other studies, so for instance
variations of damping formulations in finite volume methods [23, 24]. Although the ord
of truncation error remains the same, the change of its value results in change in the rel
weight of different frequencies. This change is also displayed with the change of the glc
Mach numbeiMg in the nonaccelerated LBGK scheme.

Notice that in our computations for different time-dependent low-frequency flows, tl
scheme usually became unstable with more than 2.5. This does not provide severe
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FIG. 7. The absolute values of Fourier coefficients versus frequency for the lift coefficlent®own in
Fig. 6: solid line—accelerated LBGK scheme; dotted line—nonaccelerated LBGK scheme.
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restrictions on the parameter of acceleration of the LBGK scheme inasmuch as with
creasedY, for Mg ~ € ~ 0.1, the “wrong” term in the continuity equationM32Y? be-
comes higher order thas?, and the accelerated LBGK scheme loses its property as ¢
incompressible solver.

8. CONCLUSIONS

The LBGK method with local grid refinement has been shown to be an efficient a
accurate tool for the simulation of incompressible, viscous flows over complex geometri
In the present study, a further improvement of this concept is proposed, which allows
use of smaller number of time-steps on refined grids without impairing spatial or tempc
accuracy. This extension of the LBGK method has been proved by analytical and numer
investigations. The gain in computational time was found to be significant. The influer
of the global parameters of the scheme on its temporal accuracy is discussed and diffe
possibilities of its local improvement are proposed. Validations by benchmark problems
steady and unsteady flows confirm high accuracy and efficiency, comparable to thos
highly developed finite volume and finite element methods for Navier—Stokes equation:
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