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The LBGK method with local grid refinement has been shown to be an efficient
and accurate tool for the simulation of incompressible, viscous flows over complex
geometries. In the present study, further improvement of this concept is proposed,
enabling the use of smaller amount of time steps on refined grids without impairing
the spatial or temporal accuracy. This extension of the LBGK method has been
proved by analytical and numerical investigations. The gain in computational time
was found to be significant. c© 2000 Academic Press
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1. INTRODUCTION

The lattice-Boltzmann method [1, 2] and its recent modification, the lattice-BGK (LBGK)
method [3–8], are based on gas-kinetic representations of fluid flow in a strongly reduced
“molecular” velocities space. In the simplest LBGK models, the flow is described through
the evolution of discrete molecular velocity distribution functions on uniform Cartesian
lattices with additional diagonal links. Hydrodynamic variables are computed at the nodes
as moments of the discrete distribution functions. The resulting algorithm has been shown
to be simple and efficient for computations of incompressible, viscous flows [7, 8, 10, 21]
and low Mach number reactive flows [9] over complex boundaries [9, 10].

An essential advantage of the LBGK method is that no discretization of the hydrodynamic
equations has to be provided. The macroscopic equations can be deduced after Taylor and
Chapman–Enskog expansions of the zero- and first-order moments of the basic equations
for distribution functions describing relaxation to the local equilibrium state. The resulting
macroscopic equations approximate the Navier–Stokes equations for incompressible flow
with second-order accuracy in Knudsen number in space and time in the low-frequency
limit. After some modifications of the relaxation scheme in combination with conventional
convective-diffusion solvers for equations of temperature and species, the scheme is able

407

0021-9991/00 $35.00
Copyright c© 2000 by Academic Press

All rights of reproduction in any form reserved.



408 FILIPPOVA AND HÄNEL

to solve low-Mach-number flows with strong density gradients caused by heat release in
chemical reactions or complex composition of the mixture including species with different
molecular weights [9]. The restriction of second-order accuracy in Knudsen number to the
low-frequency limit is not very severe because under time-independent external conditions
all laminar flows approach to this limit (stationary flows or vortex streets). Therefore, the
very simple and stable LBGK scheme with an accuracy of second order in Knudsen number
in space and time is suitable for solutions of wide classes of physically relevant problems.

A more severe restriction for the application of the basic LBGK scheme is the identity
of the “molecular” lattice and numerical mesh, which makes the scheme macroscopically
similar to an uniform Cartesian-grid solver. Nannelli and Succi [11] have extended the
original lattice-Boltzmann scheme to handle Cartesian nonuniform grids, borrowing some
ideas from the finite volume method. The other approach to extending the LBGK method to
curvilinear grids was published by He and Doolen [12, 13] based on the interpolation strategy
proposed in [14]. This concept is based on the fixed time step defined by an “underlying”
fine LBGK lattice. However, the use of strongly different spacing for the “molecular” lattice
and numerical mesh can in general decrease the accuracy of the scheme in the regions of
high gradients of macrodynamic variables. To avoid decoupling between “molecular” lattice
and numerical mesh, the concept of hierarchical grid refinement was considered [18]. This
concept is widely used in conventional CFD methods, e.g., in the method of adaptive mesh
refinement (AMR), proposed by Berger and Colella [15] and Quirk [16] and applied to the
investigation of detonation waves in [17]. The adaptation of this concept to LBGK schemes
was proposed in [18].

In the concept of hierarchical grid refinement, the calculations are based on a coarse grid
covering the whole integration domain. In critical region, detected either by adaptation cri-
teria or defineda priori, a finer grid is superposed on the basic, coarser grid. The calculation
proceeds with large time steps accordingly to the coarse grid, while on the finer grids several
time steps are performed to advance to the same time level. In its Cartesian-grid version,
this technique is very suitable for lattice BGK models as numerical mesh and “molecular”
lattice are not decoupled and therefore the accuracy of the LBGK scheme can be conserved.

In contrast to conventional methods, the employment of locally refined patches in LBGK
methods requires more care because the lattice represents the phase space (i.e., the molecular
velocity and the local coordinates). The coupling of solutions on the different meshes was
solved in [18] through the introduction of different relaxation parameters on the grids with
different lattice spacings and rescaling of the nonequilibrium part of distribution functions
in transition between different grids.

The local grid refinement strategy allows the resolution of all parts of the flow with ap-
proriate accuracy and saves memory and CPU time compared to an uniform grid. However,
due to the explicit manner of the LBGK scheme, multiple time steps are necessary on fine
grids according to the refinement ratio. For computations of time-dependent reactive flows
[9], this feature can be very important, as the use of smaller time steps in the zones of
reaction reduces the stiffness of chemical source terms and allows solution of the equa-
tions for species and temperature on the same grid as lattice-BGK equations in the simplest
explicit manner. But for computations of steady-state and low-frequency incompressible
flows the use ofn smaller time steps on the fine grid (wheren is the spatial refinement
factor) can essentially increase the computational time. To remove this drawback the use
of smaller amount of time steps in the zones of fine grid is proposed. For time-dependent
computations, this is connected with the change of “molecular” speed and reduction of the
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number of time steps on the fine grid, but does not impair the temporal accuracy in certain
limits. For steady-state computations, the saving of CPU time is much larger, because the
same amount of time steps can be chosen on coarse and fine grids, as well. Thus, the pro-
posed acceleration strategy, in combination with grid refinement, improves essentially the
performance of lattice BGK method.

The principles of this strategy are outlined in the following and proved by a number of
test calculations.

2. BASIC ALGORITHM WITH LOCAL GRID REFINEMENT

The lattice-BGK model is described by the rate of change of a discrete velocity distribution
function [3–8]:

f pi (t + δt , r + Cpiδt ) = f pi (t, r)+ ω
[

f eq
pi (t, r)− f pi (t, r)

]
. (1)

The equilibrium distribution function is a discrete analog of the Maxwellian distribution
function [5, 6]. For the simulation of incompressible flows with densityρ0 = 1, one can
take it in the form [7, 8]:

f eq
pi = tp

[
P

ρ0C2
s

+ UαCpiα

C2
s

+ UαUβ

2C2
s

·
(

CpiαCpiβ

C2
s

− δαβ
)]

(2)

P = ρ0C2
s

∑
p,i

f pi , U =
∑
p,i

f piCpi , (3)

whereCs = C/
√

3,C = δx/δt , δx is the lattice spacing andδt is the time step. The kinematic
viscosity, defined in the frame of the LBGK model [8], depends on the lattice spacing with

ν0 =
(

2

ω
− 1

)
δxC

6
. (4)

The essential parameters are the global Mach numberM0 and the Knudsen numberε of
the flow,

M0 = U0

C
, ε = δx

L
= Cδt

L
, (5)

whereU0 is a characteristic velocity andL is a characteristic length of the flow, i.e., the
minimal length for this grid on which hydrodynamic variables are essentially changed. The
order of this length can differ from one part of the flow to the other.

Considering nondimensional variables

u = U

C
, cpi = Cpi

C
, cs = Cs

C
= 1√

3
, p = P

ρ0C2
(6)

one can rewrite the expression for the equilibrium distribution function in the LBGK scheme
(Eq. 2) as

f eq
pi = tp

[
p

c2
s

+ uαcpiα

c2
s

+ uαuβ
2c2

s

·
(

cpiαcpiβ

c2
s

− δαβ
)]
, p= c2

s

∑
p,i

f pi , u =
∑
p,i

f picpi .

(7)
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The nondimensional variablesp andu defined at the nodes of the lattice as zero- and first-
order moments of the distribution functions satisfy a system of macrodynamic equations.
These equations can be derived from the zeroth- and first-order moments of the expanded
LBGK equation, Eq. (1), using a splitting of the discrete distribution function into an
equilibrium and nonequilibrium part in the sense of a Chapman–Enskog expansion.

The proof of consistency of these equations in the low-frequency limit with Navier–
Stokes equations for incompressible flows can be obtained, for example, from the proof of
consistency of LBGK approach for the system of low Mach approximation of Navier–Stokes
equations (LMNA) given in [9], in the limiting case of constant densityρmix = ρ0 = 1. The
proof is accompanied by the estimation of asymptotic accuracy of the LBGK scheme. It is
of the second order in Knudsen numberε both in time and in space ifM0 ∼ ε.

If the flow is strongly anisotropic, as in the case of high Reynolds number flows, the use
of grids with different lattice spacing is necessary to preserve the value of the Knudsen
number in the whole computational domain. For the transfer from one grid to the other
special care has to be taken to preserve the physical properties of the flow problem. These
properties are expressed by the global similarity parameters, as they are

the Reynolds number

Re= U0L0

ν0
= 6M0L0

δx
(

2
ω
− 1
) = 6M0L0/L

ε
(

2
ω
− 1
) (8)

and the Strouhal number

Str= L0

U0T0
= δt L0

δx M0T0
= δt L0/L

εM0T0
. (9)

HereU0 is a characteristic flow speed,L0 is the characteristic length of the flow defined
by the geometry, andT0 is a characteristic time. In the periodical low-frequency flow (as
vortex street)T0 corresponds to the highest hydrodynamic frequency.T0 differs from the
time of a periodTper of the oscillating flow which is larger thanT0. The Strouhal number
used below in our analysis of macroscopic equations obtained with LBGK scheme is based
on T0. The range of unsteady flows in the low-frequency limit, as mentioned above, is
defined by a Strouhal number Str= O(1), which means that the characteristic timeT0 is
of the order of the flow timeL0/U0.

The basic coarse grid is chosen by such a way thatL = L0. Notice that in some cases
it requires the redefinition ofL0 and Re. One example is flow around long slender bodies
such as airfoils when the angle of attack is not large. In this case,L0 has to be chosen not
as the length of the chord but as the thickness of the airfoil, because this length is on the
order of the characteristic length in the wake.

If the grid size is changed, it is required that the Knudsen numberε be the same on all
grids, where

ε = δc
x

L0
= δf

x

L
.

HereL is the characteristic length of the flow resolved on the fine grid.
The step sizes on coarse and fine grids,δc

x andδf
x are connected by the refinement ratio

as

n = δc
x

δf
x

= L0

L
.
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Assuming that the Mach numbers are the same on coarse and fine grids (the values of
Mach number in all overlapping nodes of the both grids are taken from the fine grid) and
assuming the same “molecular” speed on the coarse and fine gridsCc = Cf , one obtains

U0 = U c
0 = U f

0.

Conservation of the Reynolds number on coarse and fine grids, Rec = Ref , is satisfied, if
the kinematic viscosities on the both grids are the same,νc = ν f . From the definition of the
kinematic viscosity through the parameters of the LBGK scheme, Eq. (4), the relationship
between relaxation parameters on the grids with different lattice spacings is given by [18]

ωf = 2

1+ n(2/ωc− 1)
. (10)

For unsteady low-frequency flows the Strouhal number has to be preserved likewise. This
equality,

Strc = δc
t L0

εM0T0
= Strf = δf

t L0/L

εM0T0
,

results in the ratio of time-steps

δc
t

δf
t

= n.

In the following, flows with boundary conditions independent in time will be considered.
High-frequency components of solutions dissipate in the transitional stage of computa-
tions because no high-frequency disturbances are generated or amplified by the boundary
conditions. Then the time advance of LBGK scheme reproduces the low frequency solution

δf
t

T0
= (M0ε)Strc/(L0/L) = M0εStrc

n
. (11)

If M0 ∼ ε ¿ 1 andn > 1 thenδf
t/T0 ∼ O(ε2).

3. ACCELERATION OF THE LBGK SCHEME

In the original variant of the local grid refinement technique for the LBGK method
[18], the same molecular velocity on the fine and coarse grids is assumed. The calculation
proceeds with large time steps according to the coarse gridδc

t , while on the fine gridn time
stepsδf

t = δc
t /n are performed to advance to the same time-level, wheren is the refinement

ratio. To accelerate the algorithm the use of smaller amount of time steps on the fine grid is
desired.

The acceleration of the LBGK scheme for time-dependent flows is based on the idea of
using different molecular speeds on the fine grid,Cf,accand on the coarse gridCc. The ratio
of the molecular speeds is defined by the parameter of acceleration of the scheme,

ϒ0 = Cc

Cf,acc
≥ 1.

With δx = Cδt , the time step on the fine grid is

δacc
t = δc

t

ϒ0

n
. (12)
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The equation (12) shows that forϒ0 = 1 the original refinement is recovered, whereas for
ϒ0 > 1 the time step is chosen larger.

Despite different molecular velocities,Cf,acc= Cc/ϒ0, it is assumed that the local Mach
number is conserved on all grid levels. Then the dimensionless velocity (local Mach number)
uf,acc becomes

uf,acc= U f,acc

Cf,acc
= uc = U c

Cc
.

This results in the following rescaling of the dimensional velocity

U f,acc= U c/ϒ0.

From the conservation of Reynolds number, Re= U0L/ν, on all grids follows the rela-
tionship between the relaxation parameters of the accelerated scheme on the fine gridωf,acc,
and on the coarse grid,ωc

ωf,acc= 2

1+ nϒ0(2/ωc − 1)
.

The expression for the equilibrium distribution function in the accelerated LBGK scheme
(more accurately called effective equilibrium distribution function) is prescribed to be

f eq,∗
pi = tp

[
p

c2
s

+ uαcpiα

c2
s

+ ϒuαuβ
2c2

s

·
(

cpiαcpi β

c2
s

− δαβ
)]
, (13)

whereϒ is an additional adjusting parameter (described later).

4. ANALYSIS OF THE ACCELERATED LBGK SCHEME

The proof of consistency of macrodynamic solutions provided by the accelerated LBGK
scheme with the solution of Navier–Stokes equations for incompressible flows is based on
a consideration of orders of magnitude in the two parameters, the lattice Knudsen number
ε, and the global Mach numberM0, which are

ε = δx

L
= Caccδacc

t

L
¿ 1 and M0 = U0

C
= Uacc

Cacc
¿ 1.

On the molecular level, on which the LBGK method is numerically solved, the following
nondimensional variables related toCacc andL are introduced:

x̄ = x

L
, t̄ = tCacc

L
. (14)

The macroscopic variables are related to the following reference quantities:

u = U

Cacc
, p = P

ρ0Cacc2
, ν = ν0

CaccL
. (15)
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The accelerated LBGK scheme reads in nondimensional form

f pi (t + ε, r + cpiε) = f pi (t, r)+ ωacc
[

f eq,∗
pi (t, r)− f pi (t, r)

]
(16)

f eq,∗
pi = tp

[
pacc

c2
s

+ uαcpiα

c2
s

+ ϒuαuβ
2c2

s

(
cpiαcpiβ

c2
s

− δαβ
)]

(17)
pacc= c2

s

∑
p,i

f pi , uα =
∑
p,i

f picpiα.

In the following, the bar-superscripts ofx and t are skipped for simplicity. Under the
assumption of continuous physical space(t, r) in the limit of smallε, the LBGK equation,
Eq. (16), is expanded in Taylor series with respect to smallε,

ε

[
∂

∂t
+ cpiα

∂

∂xα

]
f pi + ε

2

2

[
∂

∂t
+ cpiα

∂

∂xα

]2

f pi + ωacc
[

f pi − f eq,∗
pi

] = O(ε3). (18)

The discrete distribution function can be split into equilibrium and nonequilibrium com-
ponents as

f pi = f eq,∗
pi + f neq,∗

pi . (19)

The moments of the nonequilibrium distribution functionf neq,∗
pi satisfy:

∑
p,i

f neq,∗
pi = 0,

∑
p,i

f neq,∗
pi cpiα = 0. (20)

Introduction of the expansion Eq. (19) into the Taylor series Eq. (18) and sorting in orders
of ε results in an expression for the nonequilibrium componentf neq,∗

pi

f neq,∗
pi (t, r) = − ε

ωacc

(
∂ f eq,∗

pi (t, r)

∂t
+ ∂ f eq,∗

pi (t, r)

∂xα
cpiα

)
+ O(ε2). (21)

Summation over all discrete velocities in series Eq. (18) with Eq. (19) and Eq. (20) yields
the equation of the zeroth moment,

∂t

∑
p,i

f pi + ∂β
∑
p,i

f pi cpiβ + 1

2
ε

(
∂t∂t

∑
p,i

f pi + 2∂t∂β
∑
p,i

f pi cpiβ

+ ∂β∂γ
∑
p,i

f eq,∗
pi cpiβcpiγ

)
= O(ε2),

and of the first moments by multiplying bycpiα,

∂t

∑
p,i

f pi cpiα + ∂β
∑
p,i

f eq,∗
pi cpiαcpiβ + 1

2
ε

(
∂t∂t

∑
p,i

f eq,∗
pi cpiα + 2∂β

(
1− 1

ωacc

)

× ∂t

∑
p,i

f eq,∗
pi cpiαcpiβ + ∂β

(
1− 2

ωacc

)
∂γ
∑
p,i

f eq,∗
pi cpiαcpiβcpiγ

)
= O(ε2).
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Using symmetry properties of the lattice,∑
p,i

tpcpiα = 0,
∑
p,i

tpcpiαcpiβcpiγ = 0,
∑
p,i

tpcpiαcpiβcpiγ cpiδcpiξ = 0,

∑
p,i

tpcpiαcpiβ = c2
sδαβ,

∑
p,i

tpcpiαcpiβcpiγ cpiδ = c4
s(δαβδγ δ + δαγ δβδ + δαδδβγ ),

and the expression for the effective equilibrium distribution function, Eq. (17), one can
obtain the following nondimensional macrodynamic equations

∂t
(

pacc/c2
s

)+ ∂αuα + 1

2
ε
(
∂t∂t pacc/c2

s + 2∂t∂αuα

+ ∂α∂β(ϒuαuβ + paccδαβ)
) = O(ε2) (22)

∂t uα + ∂β(ϒuαuβ + paccδαβ) = ∂βν(∂βuα + ∂αuβ + δαβ∂γuγ )

+ ε
(

1

2
∂t∂t uα + ∂β

(
1− 1

ωacc

)
∂t (ϒuαuβ + paccδαβ)

)
+ O(ε2). (23)

Here the nondimensional kinematic viscosity reads as

ν = c2
sε

2

(
2

ωacc
− 1

)
= ε

6

(
2

ωacc
− 1

)
.

For ϒ = 1 the system of equations, Eq. (22) and Eq. (23), results in the continuity
equation and the momentum equations of the Navier–Stokes equations for incompressible
flow, beside the time derivative ofp in the continuity equation and the terms proportional
to ε in the both equations.

These additional terms are in the order of truncation error in the low-frequency limit.
High-frequency components of the solution usually introduced into the LBGK scheme by
initial conditions dissipate in the transitional stage of computations if no high-frequency
disturbances are generated or amplified by boundary conditions. Thereafter, the time ad-
vance of the LBGK scheme reproduces the low-frequency solution only, which corresponds
to Strouhal numbers of Str∼ O(1). This time behavior is typical for laminar vortical flows,
for example, for von Karman vortex streets, and was checked by computations.

For verification the system of Equations Eq. (22) and Eq. (23) in molecular scales is
transformed to the characteristic scales of the low frequency solutions. The new reference
velocity is then a characteristic hydrodynamic velocityU0 instead of the value of the molec-
ular velocityCacc. The global Mach numberM0 = U0/C = Uacc/Cacc¿ 1 appears then
an as additional parameter of magnitude.

The relationship between the nondimensional quantities in Eq. (14) and Eq. (15) and the
new dimensionless quantities (with tilde-superscript) is given by:

x̃ = x

L
= x̄, δx̃ = δx̄ = ε, t̃ = t̄ L

CaccT
= t̄Strf M0ϒ0

ũ = uC

U0
= u

M0
, p̃ = P

ρ0U2
0

= pacc

M2
0ϒ

2
0

,
1

Ref
= ν0

U0L
= ν̄

M0ϒ0
.

Notice that here Strf and Ref are related to characteristic length on the fine gridL and
therefore differ from Strc, Rec by the factor ofn.
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Using these transformations with the definition of the time derivative∂ t̃ = ∂t/(M0Strfϒ0),
the following equations can be deduced from Eq. (22) and Eq. (23):

Strfϒ3
0 M2

0 ∂ t̃ p̃/c2
s + ∂αũα = O(M0ε) (24)

Strfϒ0∂ t̃ ũα + ∂βϒ ũαũβ + ∂α p̃ϒ2
0

= ∂β
(
ϒ0

Ref (∂β ũα + ∂αũβ + δαβ∂γ ũγ )

)
+ O(M0ε). (25)

At first the nonaccelerated caseϒ0 = ϒ = 1 will be considered. Assuming the global
Mach numberM0 is on the order ofεa, with a > 0 the consistency with continuity and
momentum Navier–Stokes equations for incompressible flow is given. Moreover, macro-
dynamic equations of the LBGK scheme, Eqs. (24) and (25) approximate the solution of
Navier–Stokes equations for incompressible flow with asymptotic accuracy ofε2 when
ε → 0 andM0 ∼ ε.

Usually in numerical simulations with the LBGK scheme, one uses small but finite values
of ε and M0 in the orderM0 ∼ ε ∼ 0.1. In this case, the previous asymptotic estimation
of accuracy is not sufficient, because in some regions of the flow (as, for example, in the
zones of vortex shedding) the space deviations of velocity over the characteristic length can
be two orders smaller than the reference value. One way to ensure second order accuracy
in ε in the whole computational domain is to decrease the global Mach numberM0, which
leads inversely to an increase of the computational time and to a loss of the efficiency. The
other way is the use of the semiempirical criteria [p̃]t ∼ [ p̃]s, [ũ]t ∼ [ũ]s. Here the nota-
tions [F ]t, [F ]s are used for the local deviations of variableF on the characteristic time and
length accordingly. These estimates are based on the assumption that in the absence of high-
frequency components of the solution the local time deviations of the pressure and of the
velocity are in the order of their local space deviations. These criteria can be easily checked
during the computations. With these estimates one can obtain the following overestimate
for [ p̃]s from the momentum equation [p̃]s ∼ [ũ]s, which under the condition [̃p]t ∼ [ p̃]s

ensures that “wrong” terms in the continuity equation are on the order ofε2[ũ]s and Eqs. (24)
and (25) approximate the continuity and momentum equation of Navier–Stokes equations
for incompressible flows with second-order accuracy inε if M0 ∼ ε.

Consider now the case of an accelerated scheme whereϒ0 > 1. To achieve consistency
with the Navier–Stokes equations for incompressible flow, the additional parameterϒ is
set equalϒ0; i.e.,ϒ = ϒ0. By rescaling the pressure in the form

˜̃p = p̃ϒ0

the parameterϒ0 can be cancelled in the momentum equation, Eq. (25), such that the
physical momentum equation can be achieved with a truncation error ofO(M0ε/ϒ0), that
is O(ε2) for M0 ∼ ε.

In the same way, the continuity equation is satisfied with second-order accuracy in
Knudsen numberε if

Strfϒ2
0 M2

0 ∼ ε2.

Thus, the accelerated scheme is consistent with the Navier–Stokes equations for incom-
pressible flow with second-order accuracy in Knudsen number in space and time if corre-
sponding rescalings are used. A truncation error in timeO(ε2) does not mean second-order
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FIG. 1. Temporal development of flow parameters for unsteady flow around a cylinder at Re= 100,M0 = 0.2,
with n = 6 and boundary-fitting conditions on the surface of cylinder. Drag coefficientCD, lift coefficient CL ,
and pressure difference1p between the front and end point of cylinder versus non-dimensional timet

δct
· M0

0.1

for differentϒ0. Solid thin lines correspond to the caseϒ0 = 1.2; solid lines correspond to the caseϒ0 = 1;
and solid bold lines correspond to the caseϒ0 = 0.6. Straight lines are bounds of reference valuesCDmax,CLmax,
1p(t0 + T/2).

accuracy in time, since

δt

T0
= StrcM0εϒ0

n
.

If M0 ∼ ε,ϒ0 = 1, andn = 1, then the time accuracy reduces to first order inδt/T0.
Comparison with benchmark results [20] has shown a correct time resolution ifδt/T0 ∼
O(ε3) at least in the vicinity of the body where vortices are appearing. The new acceleration
concept offers the possibility of correcting the accuracy by an appropriate combination of
the parametersM0, ϒ0, andn using, for example, the condition

δt

T0
= StrcM0εϒ0

n
∼ ε3.

An example of the influence of this choice is given in Fig. 1.

5. INTERFACE CONDITIONS OF THE ACCELERATED LBGK SCHEME

The compatible interface conditions for local grid refinement are obtained as in [18] from
the consideration of an LBGK scheme on two overlapping grids, coarse and fine. On both
grids the LBGK scheme provides the macroscopic solution

u = uNS(1+ O(ε2)), p = pNS(1+ O(ε2)),
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where superscript NS denotes the exact solution of the Navier–Stokes equations for incom-
pressible flow. The nonequilibrium part of the distribution function in the LBGK scheme
reads as

f neq
pi = −

1

ω

(
∂ f eq

pi

∂t
+ ∂ f eq

pi

∂xα
Cpiα

)
δt , (26)

with second order accuracy inε. For the accelerated LBGK scheme it reads as

f neq,∗
pi = − 1

ωacc

(
∂ f eq,∗

pi

∂t
+ ∂ f eq,∗

pi

∂xα
Cpiα

)
δt . (27)

Introduce the auxiliary postcollision distribution functions

f post
pi = f eq

pi + (1− ω) · f neq
pi (28)

for the LBGK schemes withϒ = 1 and

f post,∗
pi = f eq,∗

pi + (1− ωacc) · f neq,∗
pi (29)

for accelerated LBGK schemes withϒ > 1.
For flows with characteristic timesT such asδt/T ∼ (M0εStrc)/n and M0 ∼ ε, the

time derivative of the equilibrium distribution function in Eqs. (26) and (27) becomes of
higher order than the spatial derivatives of the equilibrium distribution function. Therefore,
Eqs. (28) and (29) can be rewritten with second-order accuracy in Knudsen numberε on
the coarse grid as

f post,coarse
pi = f eq

pi −
1− ωc

ωc
· ∂ f eq

pi

∂xα
cpiαδx (30)

and for the accelerated LBGK scheme on the fine grid as

f post,fine
pi = f eq,∗

pi −
1− ωf,acc

ωf,acc
· ∂ f eq,∗

pi

∂xα
cpiαδx. (31)

Equation (31) can be rewritten with second-order accuracy in Knudsen numberε as

f post,fine
pi = f eq,∗

pi −
1− ωf,acc

ωf,acc

∂ f eq
pi

∂xα
cpiαδx − 1− ωf,acc

ωf,acc

· ∂tp
(
(ϒ0− 1)pNS+ 0.5(ϒ0− 1)uNS

γ uNS
δ

(
cpiγ cpiδ/c2

s − δγ δ
))

c2
s∂xα

cpiαδx. (32)

The last term in Eq. (32) can be neglected, and this does not impair the accuracy of the
solution as far as its zeroth-order moment is zero and its first-order moment∼δx(∂β pNSδαβ +
uNS
α uNS

β ) ∼ [u]sε2. Up to the coefficient it is the same as introducing the error∼ε3 in the
value of the hydrodynamic velocity. Notice that forε ∼ 0.1, the error is lower thanε3 as far
as the interface between two grids is usually lying outside of the region of high gradients and
therefore the deviation of nondimensional velocity on the characteristic length of the fine grid
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in this region is [u]s ∼ εL0/L ∼ ε/n. Together with the overestimate(1− ω)/ω < 0.5, it
provides the error∼ε3/2n. This becomes important in the region of vortex shedding, where
the local value of velocity can be∼ε2.

Because the values ofuNS, pNS, and their spatial derivatives are continuous over the
interface between two grids and the relaxation parameter is changed, the following rela-
tionships between postcollision distribution functions on the interface are carried out with
second-order accuracy in Knudsen numberε:

ωf,acc

(1− ωf,acc)

[
f post,fine

pi − f eq,∗
pi

] = ωc

(1− ωc)n

[
f post,coarse

pi − f eq,coarse
pi

]
. (33)

Notice that for the nonaccelerated LBGK schemes and accelerated schemes for steady-
state problems using the same amount of time steps on the fine and coarse grid (ϒ = 1),
the expressions off eq

pi are the same on the both grids. Instead of Eq. (33), the following
equation is obtained,

ωf

(1− ωf)

[
f post,fine

pi − f eq
pi

] = ωc

(1− ωc)n

[
f post,coarse

pi − f eq,coarse
pi

]
, (34)

which results in the interface boundary conditions proposed in [18].
The higher order terms appearing from expansion off neq

pi , which are not rescaled correctly
by Eqs. (33) and (34), produce an error that does not impair the accuracy of the solution.
It can be shown by the following simple arguments. The remained terms of second order
in ε for the low-frequency limit are proportional to∼δ2

x
∂2 f eq

pi

∂xα∂xβ
cpiαcpiβ and∼δt

∂ f eq
pi

ω∂t . Under
the assumption that in the low-frequency limit [p]t ∼ [ p]s and [u]t ∼ [u]s (which can be
easily checked during the computations) one can obtain from macrodynamic equations
the following overestimate for [p]t ∼ [ p]s ∼ M0[u]s. Taking into account the symmetry
properties of the lattice

∑
p,i tpcpiαcpiβcpiγ = 0,

∑
p,i tpcpiα = 0, one can conclude that

the zeroth-order moment of truncated terms in Eqs. (33) and (34) is ofO(M0[u]sε2, [u]sε3),
that is,∼ε4 for flows with M0 ∼ ε, and the first-order moment is ofO([u]sε2), that is,ε3

for flows with M0 ∼ ε. Actually, it is of the higher order because of the presence of the
coefficientc2

s(1− ω)/ω, which can be over-estimated as 1/6.
Although in [18] second-order interpolation on the grid interfaces was proposed, the use

of linear interpolation in space and time at the grid interfaces does not change the accuracy of
the scheme. Linear interpolation off eq,coarseon a link of the coarse grid with sizeδc

x = Cδc
t

provides error in the post-collision distribution function of∼(δc
x)

2 ∂2 f eq
pi

∂xα∂xα
cpiαcpiα and on

time-intervalδc
t ∼(δc

t )
2 ∂

2 f eq
pi

∂t2 . Using the same estimates as before, one can conclude that
the common error introduced in the solution on the interface between coarse and fine grids
due to the linear interpolation of distribution functions from the neighboring nodes of the
coarse grid is consistent with the order of accuracy of the solution on the coarse grid.

6. TEST COMPUTATIONS

6.1. A Steady-State Problem

Test calculations are performed for 2-D benchmark problems of incompressible flows
defined in [20], which were calculated and compared by many different methods. The test
cases describe an incompressible flow around a circular cylinder placed nonsymmetrically
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in a long rectangular channel (Re= 20, Re= 100). The stationary 2-D flow case at Reynolds
number Re= 20 is used here for validation of the present concept. The computations are
performed on a coarse grid (221× 43 nodes) with a patch of refinement ration around
the body covering (26× 23) coarse cells. The maximum velocityU at the inlet in units of
molecular speedC is equal to 0.1 (U/C ∼ ε), which results in a relaxation parameter on
the coarse grid ofωc= 5/3. The nonaccelerated LBGK scheme and the accelerated LBGK
scheme for steady-state problems (ϒ = 1) were used in the test calculations. During the
first 2000 time steps, the solution is advanced only on the coarse grid with bouncing-back
boundary conditions on the surface of the cylinder to accelerate the onset of steady-state
flow. Then the development of distribution functions on the fine grid with boundary-fitting
conditions on the surface of the cylinder is considered but still without influence to the
solution on the coarse grid for 1000 time steps. Finally, the whole exchange of distribution
functions between two grids is performed.

In the overlapping nodes of the fine and coarse grids (except the interface coarse-to-fine
grid), the values of velocity on the coarse grid are equal to the values of velocity on the fine
grid. The convergence criterion is set by

∑
i

‖uc(xi , t + 1)− uc(xi , t)‖2
‖uc(xi , t + 1)‖2 ≤ 1× 10−7.

Results for computations on three successive refined patches are shown in Table I. As
seen in Table I, the values of drag coefficientsCD obtained on the finest patch are slightly
over the band of reference values [20]. This is connected with the fact that only the patch
was successive refined, whereas the surrounding coarse grid was fixed. This results in the
fixed error∼ε2 in the numerical solution.

The Richardson formula

p= log

(
F2h − F4h

Fh − F2h

)/
log 2

TABLE I

Results for Steady Flow around a Cylinder at Re = 20: Spatial Refinement Factorn, the

Number of Time-Steps on the Fine Grid versus One Time-Step on the Coarse GridNf , the

Values of Drag and Lift CoefficientsCD and CL , the Pressure Difference∆p between the Front

and Back of the Cylinder, the Memory Usage in Mbytes, and the CPU Time in s

n Nf CD CL 1p Mem CPU time in s

8 8 5.6118 0.0107 0.1168 19.3 10,938
4 4 5.5392 0.0109 0.1161 8.3 1,720
2 2 5.2321 0.0128 0.1123 5.5 575

Space accuracy p= 2.08 p= 2.44

8 1 5.6175 0.0107 0.1169 19.3 2,227
4 1 5.5321 0.0105 0.1160 8.3 765
2 1 5.2286 0.0124 0.1123 5.5 474

Space accuracy p= 1.83 p= 2.04

Bandwidth of 5.570 0.0104 0.1172
reference values [20] 5.590 0.0110 0.1176

Note.Spatial Accuracy is Presented by the Exponentp.
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is used for the proof of accuracy of the scheme with boundary-fitting formulation. It is ap-
plied to the values of drag coefficientsCD and to the pressure difference between the front
and back points of the cylinder computed on three successive refined patches. The results
obtained with nonaccelerated LBGK scheme are shown in the fourth row and with acceler-
ated LBGK scheme in the eighth row. These test results confirm the theoretical estimation
of second-order accuracy for the scheme with boundary-fitting formulation [18, 19].

The first observation from Table I is that the spatial accuracy is not impaired by the use
of one time-step on the fine grid versus one time-step on the coarse grid. Second, the com-
putational time could essentially be reduced by the lower number of time-steps on the fine
grid. Third, the absolute CPU time on an HP9000/C160 workstation is relatively low for such
high resolution. Unfortunately, it is rather difficult to compare absolute CPU time with the
data available from [20] because the stopping criteria was not defined in conditions of bench-
mark computations. Considering this part of benchmark computations more as a definition
of the order of global CPU time and using also results obtained in our numerical group, we
conclude that the CPU times of the accelerated LBGK scheme with local second-order grid
refinement compares well with highly developed finite element and finite volume methods.

Notice also that here such a strong side of LBGK schemes as good parallelization was not
used. Keeping this in mind, one can conclude that the LBGK scheme with boundary fitting
and local grid refinement based on the present acceleration concept is competitive with the
best conventional CFD methods and techniques for solution of steady-state problems.

6.2. A Time-Dependent Problem

To investigate the properties of the present concept in unsteady flows, the same geometric
problem as described before is solved, but at a higher Reynolds number Re= 100. The
flow becomes periodically unsteady with development of a vortex street. Definitions and
benchmark data are given again in [20].

The computations were performed on a coarse grid (221× 43 nodes) with a patch of
refinement ration around the body covering (23× 23) coarse cells. Second-order accurate
boundary-fitting conditions on the surface of cylinder were used [18, 19]. In Fig. 1 the com-
putations of drag and lift coefficients and pressure difference on the cylinder are performed
for n = 6 and a global Mach number ofM0 = 0.2. We wish to demonstrate the control of the
time accuracy, as discussed in Section 4. The parameterϒ0 is chosen asϒ0 = 1.2, 1, 0.6.

With the parameter of accelerationϒ0 = 1.2 the maximum value of the lift coefficient
differs from its reference value by more than 13%. Decreasing ofϒ0 twice corrects the value
of CL. This demonstrates that the new parameterϒ0 provides an additional possibility for
the local improvement of the time accuracy of LBGK schemes.

Results of the computations with the smaller value of a global Mach numberM0 = 0.1
(resulting in a relaxation parameter on the coarse gridωc = 1.923),ϒ0 = 2, and different
refinement ration are shown in Table II. We wish to emphasize that the memory usage
(and partially CPU time) can be reduced by programming optimizations, which are not the
objective of this paper.

As one can see from Table II, the results obtained with second-order boundary-fitting
conditions for unsteady problems agree very well with the reference values [20]. Results
of computations with the accelerated LBGK scheme (ϒ0= 2) on the patched grid with the
refinement ration= 8 are shown in Fig. 2. The numerical mesh is shown in Fig. 2a; the
instantaneous isolines ofx-velocity andy-velocity are plotted in Fig. 2b and Fig. 2c. The



ACCELERATION OF LATTICE-BGK SCHEMES 421

TABLE II

Results for Unsteady Flow around a Cylinder at Re = 100: Spatial Refinement Factorn,

Parameter of Acceleration of the SchemeΥ0, Relaxation Parameter on the Fine Gridωf , Max-

imal Values of Drag (CDmax) and Lift ( CLmax) Coefficients and Pressure Difference∆p(t0 + T/2)

between the Front and Back of the Cylinder (t0 Corresponds to CLmax), Str Number, Mem-

ory Usage in Mbytes, and CPU Time Per Cycle in s forΥ0 = 2 (CPU Time per Cycle in s

for Υ0 = 1)

CPU time per
n ϒ0 ωf CDmax CLmax 1p Str Mem cycle in s

6 2 1.351 3.18 1.00 2.49 0.300 18 277 (472)
8 2 1.220 3.23 1.00 2.50 0.300 27 597 (1053)

10 2 1.111 3.246 1.01 2.50 0.300 39 1125 (2008)
Bandwidth of 3.22 0.99 2.46 0.295

reference values [20] 3.24 1.01 2.5 0.305

FIG. 2. Unsteady flow around a cylinder at Re= 100 withn= 8 andϒ0= 2: (a) Numerical mesh; (b) instan-
taneous isolines ofx-velocity; (c) instantaneous isolines ofy-velocity; (d) instantaneous isobars.
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FIG. 3. Temporal development of flow parameters for unsteady flow around a cylinder at Re= 100,M0= 0.1
with n= 8 andϒ0= 2 and boundary-fitting conditions on the surface of cylinder. Drag coefficientCD, lift coefficient
CL , and pressure difference1p between the front and back points of the cylinder versus number of time stepsδc

t

on the coarse grid. Straight lines—bounds of reference valuesCDmax,CLmax,1p(t0 + T/2).

instantaneous isobars are presented in Fig. 2d. Figure 3 represents the corresponding drag
and lift coefficients and the pressure difference between the front and back points of the
cylinder versus the number of coarse time steps. As one can see from Figs. 2 and 3, the
reduction of the number of time steps on the fine grid does not influence the accuracy of solu-
tion of the finally developed low-frequency time-periodic flow, whereas the computational
cost is reduced by a factor close to 2.

A comparison of the performance of the accelerated LBGK model with highly developed
finite element and finite volume methods for the Navier–Stokes equations for the same
unsteady benchmark problem published in [20] shows the excellent properties of this gas-
kinetic solution method. A similar comparative analysis of the results obtained with the
LBGK scheme and with finite volume scheme for wake flow past a rectangular cylinder
recently published in [21] has also shown excellent agreement. However, the estimation of
the comparative performance of both solvers was not the objective of this paper; the LBGK
simulations were done on the basic equidistant grid.

7. COMPUTATIONAL EXAMPLE FOR CASCADE FLOW

The proposed scheme using Cartesian-like grids with accurate boundary formulation al-
lows computations of flow around complex geometries in an easy way. Anisotropic flow
features are resolved in details by grid refinement, which becomes more efficient by the
present acceleration strategy. Thus, this solution method couples the inexpensive grid gen-
eration of Cartesian grids with the efficiency of the LBGK method and the high resolution
of local grid refinement.



ACCELERATION OF LATTICE-BGK SCHEMES 423

To demonstrate this ability the cascade flow around an airfoil, for the first time considered
with multiscale lattice-Boltzmann schemes in steady-state cases in [22], is computed for
Re= 1000. The airfoil is described by

f (x)=a1(x −
√

x)+ a2(x
2−√x)+ a3(x

3−√x),

wherex is normalized to 1 and the coefficients for the upper and lower contours of the
airfoil are

a1low = 0.343766, a2low = −0.02828469, a3low = −0.1469358

a1up= 0.09054341, a2up= −0.3910232, a3up= 0.0887612.

In an absolute coordinate systemx0− y0, the integrated domain is a parallelogram ABCD
with verticesA(0, 0),C(0, D2), B(D1, D1 · tg(α)), D(D1, D1 · tg(α)+ D2), whereD2=
0.99 is the cascade width,D1= 0.7+ cos(α)+ 0.7, andα= 37.5◦. The profile is set withx
axis parallel to AB and CD sides just in the middle (atD2/2) and the origin of thex axis is at
x0= 0.7. In the inlet, the velocity is prescribed with an angleβ = 53.5◦ with respect to the
x0 axis, which results in an angle of attack on the airfoil of 16◦. The outlet pressure is con-
stant, and velocity is extrapolated from the computational domain along the normal to BD.
Pressure at the inlet is extrapolated along the normal to AC from the computational domain.

The x-axis of the coarse lattice, covering the whole domain, is directed along the AB
side of the parallelogram. The embedded grid with the refinement ration= 4 is superposed
on the basic coarse grid and second-order accurate boundary-fitting conditions [18, 19] are
applied on the surface of airfoil. The absolute velocityU at the inlet in units of molecular
speedC is equal to 0.1, (U/C ∼ ε), which results in the relaxation parameter on the coarse
grid ωc= 1.885. In Fig. 4a, the numerical mesh with embedded grid around the airfoil is
shown. Nodes of the Cartesian grid lying outside of the inclined computational domain

FIG. 4. Unsteady cascade flow around an airfoil at Re= 1000 in a periodical cell: (a) Grid and refined zone
with n= 4 around an airfoil; (b) isobars and streamlines forϒ0= 2.
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FIG. 5. Unsteady cascade flow around an airfoil at Re= 1000. Isobars and streamlines in the vicinity of the
trailing edge atϒ0= 2 (enlarged part of Fig. 4).

consume 7.6 % of the whole memory usage, but allow the conservation of the simplicity
of algorithm. Instantaneous isobars and streamlines of developed low-frequency periodical
flow are shown in Fig. 4b. In Fig. 5, the enlarged part of Fig. 4 in the vicinity of the trailing
edge is shown. In Fig. 6, the temporal behavior of drag and lift coefficients forn= 4 is
shown; dotted lines correspond to the nonaccelerated LBGK scheme (ϒ0= 1), solid lines
to the accelerated LBGK scheme (ϒ0= 2).

The results for the accelerated and nonaccelerated schemes are shown in Table III. The
difference between values obtained with different time-stepping on the fine grid is on the
order of accuracy of the solution. The CPU time per cycle obtained with the accelerated
LBGK scheme (ϒ0= 2) is better than 1.7 times less than the CPU time per cycle obtained

FIG. 6. Unsteady cascade flow around an airfoil at Re= 1000,n= 4. Comparison of temporal behaviour
of lift ( CL) and drag (CD) coefficients obtained with nonaccelerated(ϒ0= 1) and accelerated(ϒ0= 2) LBGK
schemes (the same case as in Fig. 4 and Fig. 5).
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TABLE III

Unsteady Cascade Flow around an Airfoil at Re = 1000: Spatial Refinement Factorn,

Parameter of Acceleration of the SchemeΥ0, Maximal Values of Drag (CDmax) and Lift

(CLmax) Coefficients, Strouhal Number, Memory Usage in Mbytes, and CPU Time Per

Cycle in s

n ϒ0 CDmax CLmax Str Mem. CPU time per cycle in s

4 1 0.092 0.395 0.860 36.5 2001
4 2 0.081 0.380 0.859 36.5 1162

with the complete variant of grid refinement (ϒ0= 1), and this improvement in CPU time
is achieved with zero algorithmic cost. The improvement becomes greater with increased
refinement ratio.

The curves of the lift and drag coefficients in Fig. 6 reveal the presence of different
frequencies of the periodical flow. The Fourier analysis of the time behavior shows a number
of discrete characteristic frequencies (Fig. 7). The frequencies agree very well for both the
accelerated and nonaccelerated schemes. However, the amplitudes differ in both cases, so
that their superposition in Fig. 6 apparently presents a different behavior.

The sensitivity of time-dependent wake flows behind airfoils to numerical influences,
even in the range of the truncation error, was found also in other studies, so for instance, by
variations of damping formulations in finite volume methods [23, 24]. Although the order
of truncation error remains the same, the change of its value results in change in the relative
weight of different frequencies. This change is also displayed with the change of the global
Mach numberM0 in the nonaccelerated LBGK scheme.

Notice that in our computations for different time-dependent low-frequency flows, the
scheme usually became unstable withϒ0 more than 2.5. This does not provide severe

FIG. 7. The absolute values of Fourier coefficients versus frequency for the lift coefficientsCL shown in
Fig. 6: solid line—accelerated LBGK scheme; dotted line—nonaccelerated LBGK scheme.



426 FILIPPOVA AND HÄNEL

restrictions on the parameter of acceleration of the LBGK scheme inasmuch as with in-
creasedϒ0 for M0 ∼ ε ∼ 0.1, the “wrong” term in the continuity equation∼M2

0ϒ
2
0 be-

comes higher order thanε2, and the accelerated LBGK scheme loses its property as on
incompressible solver.

8. CONCLUSIONS

The LBGK method with local grid refinement has been shown to be an efficient and
accurate tool for the simulation of incompressible, viscous flows over complex geometries.
In the present study, a further improvement of this concept is proposed, which allows the
use of smaller number of time-steps on refined grids without impairing spatial or temporal
accuracy. This extension of the LBGK method has been proved by analytical and numerical
investigations. The gain in computational time was found to be significant. The influence
of the global parameters of the scheme on its temporal accuracy is discussed and different
possibilities of its local improvement are proposed. Validations by benchmark problems for
steady and unsteady flows confirm high accuracy and efficiency, comparable to those of
highly developed finite volume and finite element methods for Navier–Stokes equations.
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